1,829 research outputs found

    New chalcogenide glasses in the GeSe2-Ga2Se3-In2Se3 and GeSe2-Ga2Se3-PbSe domains

    No full text
    International audienceTwo new chalcogenide glassy domains were explored by substituting Ga for In or Pb in compositions from the GeSe2-Ga2Se3 tie line in the Ge-Ga-Se ternary diagram. The thermal, optical and mechanical properties of these glasses were determined and the effect of the substitutions on these properties was assessed. It is shown that addition of lead tends to destabilize the glasses while the addition of indium tends to stabilize them. Both elements induce a systematic increase in the onset of transmission values and in the densities when substituted to gallium. The glasses synthesized represent good potential candidates for the production of glass-ceramics with photovoltaic or nonlinear properties

    Analysis of the dynamic changes in the soft palate and uvula in obstructive sleep apnea-hypopnea using ultrafast magnetic resonance imaging

    No full text
    Apnea and the respiratory cycle are dynamic processes in obstructive sleep apnea-hypopnea (OSAH), which occur only during sleep. Our study aimed to observe the dynamic changes in the soft palate and the uvula during wakefulness and sleep using ultrafast magnetic resonance imaging (UMRI) to provide reference data for the pathogenesis and treatment of OSAH. The dynamic changes in the soft palate and uvular tip of 15 male patients (average age: 50.43 ± 9.82 years) with OSAH were evaluated using UMRI of the upper airway while asleep and awake after 1 night of sleep deprivation. A series of midline sagittal images of the upper airway were obtained. The distance from the center of the soft palate to the x-axis (an extended line from the anterior nasal spine to the posterior nasal spine), from the uvular tip to the x-axis, from the center of the soft palate to the y-axis (a perpendicular line from the center of the pituitary to the x-axis), and from the uvular tip to the y-axis (designated as PX, UX, PY, and UY, respectively) were measured during sleep and wakefulness. The minimum PX, PY, UX, and UY were shorter during sleep than during wakefulness, whereas the maxima were longer during sleep (P < 0.01), the differences between the maximum and minimum PX, PY, UX, and UY were larger during sleep (P < 0.01). The upward, downward, forward, and backward ranges of movement of the soft palate and the uvular tip were larger during sleep in OSAH patients. This increased compliance may trigger each airway obstructive event

    Finite Domain Anomalous Spreading Consistent with First and Second Law

    Full text link
    After reviewing the problematic behavior of some previously suggested finite interval spatial operators of the symmetric Riesz type, we create a wish list leading toward a new spatial operator suitable to use in the space-time fractional differential equation of anomalous diffusion when the transport of material is strictly restricted to a bounded domain. Based on recent studies of wall effects, we introduce a new definition of the spatial operator and illustrate its favorable characteristics. We provide two numerical methods to solve the modified space-time fractional differential equation and show particular results illustrating compliance to our established list of requirements, most important to the conservation principle and the second law of thermodynamics.Comment: 14 figure

    XFEM Simulation of Pore-Induced Fracture of a Heterogeneous Concrete Beam in Three-Point Bending

    No full text
    The extended finite element method with the linear softening law is employed to simulate poreinduced crack initiation and propagation in heterogeneous plain concrete beams in three-point bending. A series of numerical simulations was performed and experimentally validated. The crack was found to always initiate at the beam bottom in the point nearest to the pore, propagating through it. When the pore has a larger offset from the beam midspan, the beam displays higher fracture resistance and energy dissipation spent for fracture. With an increase in a distance from the beam bottom, the ultimate load also increases, but the energy dissipation slightly varies. The pore sizes have a little effect on the fracture resistance of the concrete beam.Моделирование вызванных пористостью зарождения и распространения трещины в бетонных балках неоднородной структуры при трехточечном изгибе выполнено с помощью расширенного метода конечных элементов и закона линейного разупрочнения. Проведен ряд операций численного моделирования, проверенных экспериментально. Установлено, что трещина всегда зарождается на нижней грани балки в точке, ближайшей к поре, прорастая сквозь нее. Если пора в большей степени смещена относительно среднего пролета балки, последняя проявляет более высокое сопротивление разрушению и диссипацию энергии, затрачиваемой на разрушение. По мере увеличения расстояния от поры до нижней грани балки допустимая нагрузка также возрастает, а диссипация энергии несколько изменяется. Показано, что размеры пор оказывают незначительное влияние на сопротивление бетонной балки разрушению

    Charge ordering in charge-compensated Na0.41CoO2Na_{0.41}CoO_2 by oxonium ions

    Full text link
    Charge ordering behavior is observed in the crystal prepared through the immersion of the Na0.41CoO2Na_{0.41}CoO_2 crystal in distilled water. Discovery of the charge ordering in the crystal with Na content less than 0.5 indicates that the immersion in water brings about the reduction of the Na0.41CoO2Na_{0.41}CoO_2. The formal valence of Co changes from +3.59 estimated from the Na content to +3.5, the same as that in Na0.5CoO2Na_{0.5}CoO_2. The charge compensation is confirmed to arise from the intercalation of the oxonium ions as occurred in the superconducting sodium cobalt oxide bilayer-hydrate.\cite{takada1} The charge ordering is the same as that observed in Na0.5CoO2Na_{0.5}CoO_2. It suggests that the Co valence of +3.5 is necessary for the charge ordering.Comment: 5 pages, 4 figure

    Faithful remote state preparation using finite classical bits and a non-maximally entangled state

    Full text link
    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page
    corecore